Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides.

نویسندگان

  • H P Spaink
  • A H Wijfjes
  • B J Lugtenberg
چکیده

Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induction. At times later than 5 h after induction, a significant influence of the presence of the nodI and nodJ genes on LCO secretion was detectable neither in the wild type nor in LCO-overproducing strains. By using plasmids in which the nodI and nodJ genes are cloned separately under control of a flavonoid-inducible promoter, it was shown that both genes are needed for a wild-type level of LCO secretion. Therefore, these results demonstrate that nodI and nodJ play a role in determining the efficiency of LCO secretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel lipochitin oligosaccharide structures produced by Rhizobium etli KIM5s.

The novel lipochitin oligosaccharide (LCOs) structures produced by Rhizobium etli KIM5s were characterized using a nanoHPLC reverse-phase system coupled to an ion-trap mass spectrometer. This technique was shown to be more sensitive for structural elucidation of LCOs than previously used mass spectrometric methods. The structures of the LCOs of R. etli KIM5s, the majority containing six monosac...

متن کامل

Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis

∗Corresponding author. E-mail: [email protected] Abbreviations: AGP, Arabinogalactan protein; GPI-anchor, Glycosylphosphatidylinositol lipid anchor; HRGP, Hydroxyproline-rich glycoprotein; IT, Infection thread; NF, Nod-factor (Lipochitin oligosaccharide); LPS, lipolysaccharide; PRP, proline-rich protein; UDP, uridine diphosphate Colonization of host cells by rhizobium bacteria involves th...

متن کامل

Production and Excretion of Nod Metabolites by Rhizobium leguminosarum bv. trifolii Are Disrupted by the Same Environmental Factors That Reduce Nodulation in the Field.

Lipooligosaccharides (Nod metabolites) have been shown to be essential for the successful nodulation of legumes. In strains of Rhizobium leguminosarum bv. trifolii, Nod metabolites were detected predominantly within the cell and to a lesser extent in the periplasmic space and the growth medium. The production, and in particular the excretion, of Nod metabolites was restricted by a range of envi...

متن کامل

Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis.

Synthesis of chitin oligosaccharides by NodC is the first committed step in the biosynthesis of rhizobial lipochitin oligosaccharides (LCOs). The distribution of oligosaccharide chain lengths in LCOs differs between various Rhizobium species. We expressed the cloned nodC genes of Rhizobium meliloti, R. leguminosarum bv. viciae, and R. loti in Escherichia coli. The in vivo activities of the vari...

متن کامل

LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range.

Legume-Rhizobium symbiosis is an example of selective cell recognition controlled by host/non-host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 21  شماره 

صفحات  -

تاریخ انتشار 1995